
Introduction to Cryptography

Ayelet Yablon Daniela Yablon

May 22, 2022

Abstract

Cryptography is a cornerstone of modern communication systems, and is crucial to ensure security
and privacy. In this paper, we describe two important encryption schemes — the RSA (Rivest–Shamir–
Adleman) and Diffie Hellman encryption schemes. As quantum computers become more powerful, there is
a very real possibility that these encryption systems will no longer remain secure, due to Shor’s algorithm,
developed by Peter Shor in 1994. We also describe how Shor’s algorithm, using properties of quantum
computers, can attack the RSA encryption scheme.

1

Contents
1 Introduction 3

2 Preliminaries 3
2.1 Randomness . 3
2.2 Asymptotic Notation . 3
2.3 Introduction to Complexity Theory . 3

3 Introduction to Group Theory and Number Theory 4
3.1 Euler’s Totient Function . 5
3.2 Euler’s Totient Theorem . 5
3.3 Fermat’s Little Theorem . 6
3.4 Lagranges Theorem . 6
3.5 Linear Algebra . 8

4 RSA 9
4.1 Key Generation . 9
4.2 Encryption Algorithm . 10
4.3 Decryption Algorithm . 10
4.4 Proof of Correctness . 10
4.5 Proof of Security . 11

5 Diffie Hellman 11
5.1 How It Works . 11

6 Shor’s Algorithm 11

7 Acknowledgements. 12

2

1 Introduction
In this expository paper, we discuss two important encryption schemes – the RSA (Rivest–Shamir–Adleman)
encryption scheme in Section 4, and the Diffie Hellman encryption scheme in Section 5. In Section 6
we describe how Shor’s algorithm attacks the RSA encryption scheme. The background knowledge and
preliminaries are detailed in Section 2. Our main reference for this paper is [Aum17].

2 Preliminaries

2.1 Randomness
Randomness is key for secure encryption algorithms. Without random numbers, attackers can find the
patterns in the numbers chosen for encryption and easily break the algorithm. However, random numbers
are difficult to obtain, so computer scientists have developed technology called pseudorandom generators.

Definition 1 (Pseudorandom generator). A pseudorandom generator is a generator that generates seemingly
random numbers given a small amount of truly random numbers.

The pseudorandom generator takes in a small amount of truly random numbers, called a seed, and based
off of that seed it produces a lot of seemingly random numbers. Encryption algorithms often need random
numbers, so cryptographers use pseudorandom generators to create those random numbers.

2.2 Asymptotic Notation
Theoretical computer scientists analyze efficiency of algorithms in terms of the Big O notation, which captures
the asymptotic growth of a function.

Example 1. If an algorithm takes 2n3 + 5n2 + 9n − 4, the algorithm’s efficiency written in asymptotic
notation would be O(n3). That is to say, Big O Notation ignores all coefficients of the terms, and only
produces the fastest-growing term. In our case, 2n3 was the fastest growing term. It’s a bit counter-intuitive
to only take the fastest growing term, but since it’s the fastest growing term, as n goes to infinity, n3 grows
much faster than n2.

Example 2. Let’s say that an algorithm takes 2log2 n+2
√
n. We can simplify this equation to n+2

√
n to see

that the fastest growing term is 2
√
n. Thus, we would write the efficiency of this algorithm in Big O Notation

as O(2
√
n).

Example 3. Imagine an algorithm that takes 2+1/n2 time to run. The fastest growing term here is actually
2. Thus, Big O Notation would be written as O(2). However, when it’s just integer without any coefficient
we just write it as O(1). Thus, the time it takes for this algorithm to run would just be O(1).

2.3 Introduction to Complexity Theory
Here, we briefly describe the importance of complexity theory in cryptography and define important com-
plexity classes. The field of cryptography relies on the computational hardness of certain problems (factoring
for RSA and discrete logarithms for Diffie–Hellman) to ensure security of encryption system against realistic
adversaries that are limited in the amount of time and computational resources they have. Complexity
theory, which studies the computational resources required to solve different problems, is therefore a founda-
tional aspect of cryptography. For example, the problem finding the shortest path between two vertices in a
graph might be easily solvable, but for more difficult problems like finding satisfying assignments to boolean
formulas (SAT), we do not know how to solve them in a reasonable amount of time. Complexity theory tries
to classify problems based on how difficult they are, or how difficult we believe them to be. It achieves this
by defining complexity classes — sets of problems that need different amounts of computational resources,

3

relative to the size of the input of the problem. We use n to denote the size (number of bits) of the input
for the problem.

Definition 2 (TIME). TIME(f(n)) is the class of the solvable computation problems the time f(n).

Algorithms that are efficiently solvable are usually characterized by a polynomial runtime.

Definition 3 (P). This is the class of problems solvable in polynomial time. Formally, it is the union of all
TIME(O(nk)) where k ∈ N.

Definition 4 (SPACE). SPACE(f(n)) is the class of the solvable computation using f(n) bits of memory.

Definition 5 (PSPACE). This is the class of problems that is solvable using polynomial memory. This is
the union of the types of SPACE(nk) problems, where k ∈ N.

Definition 6 (NP). Also known as nondeterministic polynomial time, this is the class of problems verifiable
in polynomial time.

3 Introduction to Group Theory and Number Theory
In this section, we give the background knowledge in group theory and number theory required to understand
the encryption algorithms we talk about later.

Definition 7 (Group). A set of elements that respects a binary operation with the following properties

• Associativity - given three real numbers a, b, and c, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c

• Closure - a ∈ G and b ∈ G, a ⋆ b ∈ G

• Identity Existence - given group G, there exists element i ∈ G such that a ⋆ i = a

• Inverse Existence - given group G, there exists element e ∈ G such that a ⋆ e = i

To be a group, it must satisfy these four group axioms. In addition, groups may be classified in other ways
too; a cyclic group means that a group contains the powers of a single element g mod p and a commutative
group is a group where two elements in the group x and y satisfy x ∗ y = y ∗ x.

Suppose that p is prime. The group Z∗
p is defined as the set of positive integers from 1 to p− 1 mod some

number, with the operation being multiplication mod p. For example, the group Z∗
5 is the set 1, 2, 3, 4.

Two numbers a and b are congruent to each other mod c if they leave the same remainder after dividing
by c.

Here are a series of examples that show the modulo operator:

17 ≡ 3 mod 7

22 ≡ 5 mod 17

27 ≡ 6 mod 21

39 ≡ 7 mod 32

4

3.1 Euler’s Totient Function
The group Z∗

n is the group that contains all the integers from 1 to n that are coprime with n, the operation
being multiplication mod n. The size of the group is denoted by the totient function,

φ(n) = |Z∗
n| = |{a : 1 ≤ a ≤ n, gcd(a, n) = 1}|.

Here gcd(a, n) denotes the greatest common divisor of a and n. If n = p is prime, then Z∗
p will contain the

set of integers from 1 to p−1. However, if n is not prime, then not all integers from 1 to n−1 will be coprime
to n. Integers with non-trivial common divisors with n will not have inverse mod n, violating a group axiom.
For example, consider Z∗

15, which contains the elements {1, 2, 4, 7, 8, 11, 13, 14}. We can derive this by first
looking at all the numbers in the set {1, 2, . . . , 15} and crossing off the elements that do not have inverses.
The elements that do not have inverses are the numbers in which the greatest common divisor of 15 and
that number is not one. Thus, all the multiples of 5 and 3 are not in this set. The number of multiples of 3,
ignoring 15 is 4, and the number of multiples of 5, ingoring 15 again is 2. There is 1 multiple of 15 that will
also not have an inverse. So we can write that the number of elements in this set is 15− 4− 2− 1 = 8. In
other words, this is the total minus the multiples of 3 in the set excluding 15 which is 4, minus the multiples
of 5 excluding 15 which is 2, minus multiples of 15 which in our set is only 1.

We can generalize this method for a set of any length. If we have a set Z∗
pq where p and q are primes, the

length of the set is pq−(p−1)−(q−1)−1 (we followed this form in the example above: 3·5−(3−1)−(5−1)−1 =
8). This simplifies to pq−p−q+1 = (p−1)(q−1). Thus the number of elements in Z∗

n where n is a product
of two primes p, q is

φ(n) = φ(pq) = (p− 1)(q − 1).

Thus, Euler’s Totient Theorem states that if n = p1p2 . . . pk is a product of k primes, the size of the group
Z∗
n is φ(n) = φ(p1 · p2 · . . . · pk) = (p1 − 1)(p2 − 1) · (pk − 1).

3.2 Euler’s Totient Theorem
Theorem 1 (Euler’s Theorem). For two positive integers x, n, such that x, n are relatively prime

xφ(n) ≡ 1 mod n.

Proof. To begin to understand how this works, we can introduce a set of integers: A = {a1, a2, . . . , aφ} to
be the elements ai such that gcd(ai, n) = 1. We know there are φ(n) number of elements in the set because
of Euler’s Totient Function. Multiplying each element in A by x, which is coprime with n, yields the set
B = {xa1, xa2, . . . xaφ}. We can mod each value by n to get a modified version of set B. So C = {xa1
(mod n), xa2 (mod n), . . . , xaφ (mod n)}.

We know that applying the modulus function will not result in any of these elements being equal to 0,
because if x · ai ≡ 0 mod n, that would imply that ai ≡ 0 mod n. But this cannot be true since we know
that the elements of A have to come from the set {1, 2, . . . , n− 1}. This means that the elements in C also
come from the set {1, 2, . . . , n− 1}.

The elements in set A are all the numbers that are relatively prime with n, mod n, and these elements
are not congruent to each other, mod n. We know this also applies to set C becuase the elements of set C
are all the elements relatively prime to n and are not congruent to each other mod n. So each element in
C is in A, and each element in A is in C, thus A = C.

We know that for every element in C, there is an element in B that is congruent to this element mod n.
In other terms,

xa1 ≡ xa1 (mod n) mod n1.

5

And we had just stated that every element in C is in A, so that means that there is an element in A that
is congruent to this element mod n, or

ai1 ≡ xa1 mod n.

This is true for every element in A, where that element exists somewhere in set B.
We can multiply all the the elements in A to get product u, and we can multiply all the elements in B

to get products v. We know that
v ≡ u mod n

because each element in A is equal to one of the elements in B, and that applies to all elements in A. We
can take a closer look at v. We know that v is the product of all the elements of B which is the product of
all the elements of A and x. We know that there are φ(n) number of elements in A, so we are multiplying
x by itself φ(n) number of times. We can rewrite v as

v = u · xφ(n).

Substituting this back into our first equation yields

u · xφ(n) = u mod n.

Dividing both sides by u gives us
xφ(n) ≡ 1 mod n.

3.3 Fermat’s Little Theorem
Fermat’s little theorem is a special case of Euler’s Totient Theorem when n is a prime number. We can label
this number as p. We already know that φ(p) = p− 1.

Theorem 2 (Fermat’s Little Theorem). For any integer x such that p does not divide x,

xp−1 ≡ 1 mod p

3.4 Lagranges Theorem
Definition 8 (Order of a Group). The order of group A is number of elements in the group, denoted with
|A|

Definition 9 (Order of an Element). Given a group G, if g ∈ G, then the order of g also denoted by ord(g)
is the smallest number x that satisfies gx = e (where e is the identity element of the group).

Definition 10 (Subgroup). A subgroup is part of a group and all of the elements in a subgroup are in the
group. Both groups are defined under the same operations. This is denoted with the symbol ⊴.

This theorem is named after Joseph-Louis Lagrange, an Italian astronomer and mathematician. In a
group G, there are two basic subgroups: itself and the identity element, often denoted as e. But how do you
know if there are any more subgroups?

Theorem 3 (Lagrange’s Theorem). If J is a subgroup of G, denoted by J ⊴ G, then the order of J is a
divisor of the order of G.

1Note that the first element in A might not be equal to the first element in C

6

Proof. Let G be a finite group and have |G| = x. We know that the identity element, denoted as e, is a
subgroup as well as G. This is because |e| = 1, and 1 divides of x, and |G| = x, and x divides x. Additionally,
let J be a subgroup of G. This means that J will also contain the same identity element, e, or 1. Next, we
find an element g1 that is an element in G, but not an element in J . We can then multiply every element in
J by g1 to get g1J . This is called a ’left coset’ because the elements of J are being multiplied by g1 on the
left. Additionally, it is important to understand that J and g1J have no elements in common; they do not
overlap.

The reason why is because of the proof that follows: let’s assume that there is an element in both J and
g1J . This would mean that

g1 · ja = jb,

where ja, jb ∈ J . Multiplying this equation by j−1
a , the inverse of ja gives us

g1 · ja · j−1
a = jb · j−1

a .

Following the inverse existence axiom defined above, this simplifies to

g1 · e = jb · j−1
a .

We know the identity element is 1, so the right hand side is just g1. Also, because ja and jb ∈ J , that means
that their product, or g1, is also in J . But this doesn’t make sense, because we chose g1 as an element that
is not in group J . Thus, the intersection of J and g1 is ∅.

To continue our proof, we can pick another element g2 ∈ G that is not in J or g1J . The left coset of
the set is g2J , or every j ∈ J multiplied by g2. Using the same argument as above, the intersection of the
subgroup J and the set g2J is ∅. In addition, g1J and g2J do not overlap either.

This is as follows: we can start by assuming that there is an element that the sets g1J and g2J share.
This would imply that g1 · jc = g1 · jd, for some jc, jd ∈ J . Multiplying both sides by the inverse of jd
computes to

g1 · jc · j−1
d = g2 · jd · j−1

d .

However, we know that the product of two inverses of a group is e, or 1. So now we have

g1 · jc · j−1
d = g2 · 1.

We also know that the product of jc and j−1
d is in J because of the closure axiom. We can call this product

jx (jx ∈ J). Substituting this in is
g1 · jx = g2.

But this doesn’t make sense. If this equation were true, that would mean that g2 ∈ g1J . However, we
specifically chose a value for g2 that is not in this coset. Thus, g2 is not in g1J .

We can continue this process until we reach the point where there are no elements left to be in a coset.
The order of these cosets are equal to the order of the subgroup J . We can understand this easier if we
assume the left coset gJ has a duplicate. This means that for some jm, jn ∈ J ,

g · jm = g · jn.

When we multiply both sides by g−1, we get

g−1 · g · jm = g−1 · g · jn.

Just like above,
g−1 · g = e = 1.

Now we have
jn = jm.

7

But these to values are different, thus proving that the orders of the cosets are equal to each other.
This results in G being split into subgroup J and sets g1J, g2J, . . . , gnJ . The reason why J is a subgroup

and the rest are sets is because J contains the identity element, and the other sets do not. Containing the
identity element satisfies the group axiom of identity existence.

We can call the number of cosets a group has as w, which is also the index. So the index of J in
G = w = |G : J |. So we have

w · |J | = |G|,

or the order of J divides the order of G.

Example 4. Let A be a group with |A| = 403. The factors of 403 are 13 and 31. According to Lagranges
theorem, the only possible subgroups of 403 have orders of 403, the identity element which is 1, 13, and 31.
This doesn’t necessarily mean that there is a subgroup of order 13, the theorem just yields the possibilities of
the order of a subgroup.

3.5 Linear Algebra
In this section, we give a brief introduction to basic linear algebra that comes in handy in understanding
basic quantum mechanics and Shor’s algorithm, which we describe in Section 6.

Definition 11 (Matrix). A matrix is an array of numbers organized into columns and rows, and allows for
computation in linear algebra.

Definition 12 (Vector). A vector is a quantity with both magnitude and direction. A vector is a matrix
with one column and a number of rows.

Adding Matrices To add two matrices of equal dimensions, you add the corresponding parts to each

other and the sum goes into the corresponding spot of the new matrix. For example,
{
1 2
3 4

}
+

{
5 6
7 8

}
={

1 + 5 2 + 6
3 + 7 4 + 8

}
=

{
6 8
10 12

}
.

Multiplying by a Scale Factor To multiply a matrix of a scale factor, you multiply each number in the

matrix by the scale factor, and the product goes in the corresponding spot. As an example, 3 ·
{
1 2
3 4

}
={

1 · 3 2 · 3
3 · 3 4 · 3

}
=

{
3 6
9 12

}
.

This can be used to subtract matrices by multiplying one matrix by the scale factor "-1", and then
adding the two matrices.

Matrix-Vector Multiplication To multiply a matrix, the number of columns of the first matrix needs
to be equal to the number of rows of the second matrix. You multiply the column of the first matrix by
the first row of the second matrix, the second column of the first matrix by the second row of the second
matrix, and continue this way, with their product aligning to the corresponding spot of the new matrix. So,{
3 6
9 12

}
·
{
5
10

}
=

{
3 · 5 + 6 · 10
9 · 5 + 12 · 10

}
=

{
75
165

}
.

A specific kind of matrix multiplication is matrix-vector multiplication, which is a vector multiplied by a
matrix to yield a new vector.

Definition 13 (Linear Independence). A set of vectors {v1, v2, . . . , vn} is said to be linearly independent if
the following is true: If a1v1+a2v2+ . . .+anvn = 0 for scalars ai, then that implies a1 = a2 = . . . = an = 0.

8

Example 5. Let A =

{
1 2
1 0

}
. Are the vectors

{
1
2

}
,

{
1
0

}
, and

{
1
2

}
, independent? We can write this a

different way: is there such values for α1, α2, and α1 that satisfy α1 ·
{
1
2

}
+α2 ·

{
1
0

}
+α3 ·

{
1
2

}
=

{
0
0

}
, where

α1, α2, and α3 ̸= 0(but are real numbers)? The answer is no, so these vectors are independent. Conversely,
if the answer to this question was yes, that would mean that the vectors are dependent.

Definition 14 (Column Span). Given a matrix of any size, with the columns labeled v1, v2, . . . , vn, the column
span of this matrix is the set of all vectors that can be written in the form a1 · v1 + a2 · v2 + . . . + an · vn,
where a1, a2, . . . , an = R.

The column span of independent 2-dimensional vectors is the whole plane and is infinite, and the column
span of dependent 2-dimensional vectors is a line, which is also infinite.

Definition 15 (Null Space). For a given matrix B, the null space of that matrix is the set of all the vectors
v that satisfy Bv = 0.

Identity Matrix An identity matrix is an m by m matrix of all zeroes, except for the diagonal of the top
left corner to the bottom right, which is just ones. Let’s call it A in our example, and let N be a matrix of
m rows and k columns. This means that A ·N = N, for any m and k in the set of real numbers.

4 RSA
Many encryption algorithms have been developed, but have also been solved. It is crucial for cryptography
to have encryption methods which are difficult to solve, or impossible to solve. Most encryption algorithms
have a key between two people. That is to say, if Person A wants to communicate with Person B, and Person
A wants to communicate with Person C, Person A would have two separate keys: a key with Person B and
a key with Person C.

This can become extremely inefficient if Person A wants to communicate with multiple people. Person
A would then have to generate individual keys for every single person. This posed a question for many
cryptographers: Is there an algorithm where Person A only has one key that everyone can use?

Cryptographers then developed a clever technique: public key cryptography.

Definition 16 (Public Key Cryptography). Rather than using one key per person, public key cryptography
is a pair of keys, one that is public and one that is private. The public key is accessible to the whole public,
and used for encryption. The private key is only accessible to the person receiving the message, and is used
for decryption.

Another important technique cryptographers developed was trapdoor functions.

Definition 17 (Trapdoor Function). A trapdoor function is a function in which it is easy to go in one
direction, but harder to go the other direction. In other words, it’s easy to go from x to y, but hard to go
from y to x.

An example of a trapdoor function is the modulus function, which was previously defined in Intro to
Group Theory.

4.1 Key Generation
RSA uses both public key cryptography, and trapdoor functions to work. In the RSA algorithm, two people,
Alice and Bob, wish to communicate. Here is how Bob would go about encrypting his message.

Alice establishes her key, consisting of a private key only she knows, and a public key everyone else
knows. We can call her private key d. Her public key consists of two numbers, which we can call e and N .

9

e represents the exponent that Bob has to raise his message to, while N is the modulus. N is achieved by
multiplying two large primes together. To establish the keys, e and d must be inverses of each other in the
group φ(N).

4.2 Encryption Algorithm
Bob takes his message, which we can call x, raises it to the eth power, then takes the remainder when divided
by N like so:

xe mod N

We can call this number y. Bob sends y, the encrypted message, to Alice.

4.3 Decryption Algorithm
Alice receives Bob’s message, which we can call y. She raises it to the dth power and takes the remainder
when dividing by N :

yd mod N

This then gives Alice Bob’s original message, x.

4.4 Proof of Correctness
Even though Bob publicly announces y, and e and N are public, without Alice’s secret key d, it is really
hard to find what x originally was, because of the discrete log problem.

But e and d need to are deliberately chosen so that they are inverses of each other in mod φ(n) so that
Euler’s Theorem can be used. Recall that Euler’s Theorem states:

aφ(N) ≡ 1 mod N

Mathematically writing the fact that e, d are inverses of each other in group φ(N) looks like:

ed ≡ 1 mod φ(N)

We can rewrite this equation to obtain (where k is an integer):

ed = k · φ(N) + 1

Back to Alice and Bob, if Alice raises yd, we can substitute y = xe to get (xe)d = 1 mod n. Using the
Power Rule we can rewrite this as:

yd ≡ xed mod n

We can substitute ed = k · φ(N) + 1 to get:
xk·φ(N)+1

Applying the Product Rule gives us
xk·φ(N) · x1 mod N

Since x1 = x, we now have:
xk·φ(N) · x mod N

Earlier we proved that xφ(N) = 1 mod N , so substituting we get:

1 · x mod n

Simplifying results in:
x mod N

Thus, Alice can achieve Bob’s original message with her secret key, since raising yd = x.

10

4.5 Proof of Security
It is extremely hard to discover Bob’s encrypted message without Alice’s private key d. The only way
to find d is to know φ(N) However, to find φ(N), then you would need to know the factors of N , since
φ(N) = (p − 1)(q − 1), assuming N has two factors. The way to find the factors of N , one would need to
factor N . Therefore, this algorithm is so secure as long as there’s no efficient way to factor N .

5 Diffie Hellman
Diffie-Hellman is an algorithm to generate a shared secret. It is named after two inventors, Whitfield Diffie
and Martin Hellman, who published this idea of using a private key and a corresponding public key in 1976.
This encryption algorithm was a major breakthrough in the history of cryptography as it was one of the first
algorithm to implement public key cryptography.

5.1 How It Works
Let’s say two people, Alex and Ben, want to generate information that only they have access to. How would
they go about that? To start off, let Alex have a secret key a and Ben have secret key b. This means that
only Alex has access to a, and only Ben has access to b. Additionally, these keys must be chosen from Z∗

p,
for some prime number p. Alex and Ben then do similar operations to their private key; they raise a public
generatr, g, the their secret-key’s power. So that means that

A = ga mod p

B = gb mod p

After completing this, Alex sends A to Ben, and Ben sends B to Alex, publicly. Alex and Ben do similar
computations again:

Ba = (gb)a = gab mod p

Ab = (ga)b = gab mod p

Now Alex and Ben ended with the same result, gab, so they have a shared secret that only they can view.
The reason why this works is because of the Discrete Logarithm Problem. The Discrete Logarithm

Problem states that given the numbers a, b, and p, it is easier and takes less time to calculate the value of
ab mod p, and given a, ab, and p, it’s harder to calculate the value of b in ab mod p.

6 Shor’s Algorithm
If quantum computers were to ever be invented, mathematicians have already developed algorithms that
utilize the strengths of those computers to break modern-day encryption algorithms, specifically RSA. Math-
ematician Peter Shor developed an algorithm, Shor’s Algorithm, that can break the encyprtion algorithm of
RSA through quantum computers. Recall that the security of RSA relies on the computational hardness of
the factoring problem. That is to say, given the RSA modulus N = pq, if one can factor N , one breaks the
security of the encryption algorithm. Indeed, Shor’s algorithm attempts to factor N . Here, we describe the
high-level idea of Shor’s algorithm.

Shor’s algorithm works by reducing the problem of factoring to the problem of order finding. Specifically,
it uses the fact that if we can reliably and efficiently find the period of the function f(x) = gx (mod N)
where g ∈ Z∗

N , then we can factor N into its two prime factors. Concretely, it takes the following steps.

11

1. Pick a random number g ∈ Z∗
N . This can be done by picking random integers 1 < g < N until the

picked number g is coprime with N . That is, gcd(g,N) = 1.

2. Find the smallest r such that gr ≡ 1 (mod N) using the quantum Fourier transform.

3. If r is even and if gr/2 ̸≡ 1 (mod N), then compute gr/2 ± 1 by repeated squaring and using Euclid’s
algorithm, find gcd(gr/2 + 1, N) and gcd(gr/2 − 1, N).

Step 2 is where we leverage a quantum algorithm called the quantum Fourier transform to efficiently find
the period of the function f(x) = gx (mod N). We will not get into the details of the quantum part of the
algorithm, however we will explain the basics of the (classical) reduction from factoring to order-finding.

Suppose that g ∈ Z∗
N and r = ord(g), which means that r is the smallest positive integer such that gr ≡ 1

(mod N). Equivalently, there is some integer m such that

gr − 1 = m ·N.

Now, if r is even, then we can factor the left-hand side of the equation using the formula for the difference
of squares,

(gr/2 + 1)(gr/2 − 1) = m ·N.

Now, if N = pq does not divide either of gr/2 ± 1, then we know that p has to divide one of gr/2 ± 1 and q
divides the other. Without loss of generality, suppose that p divides gr/2+1 and q divides gr/2− 1. Since N
divides neither, q does not divide gr/2+1 and p does not divide gr/2−1. This means that gcd(gr/2+1, N) = p
and gcd(gr/2 − 1, N) = q. Thus computing the GCDs in Step 3 gives the factorization of N . Finally, we
note that the "bad" cases of choosing g such that its order r is odd, or N divides one of gr/2 ± 1 happens
only with a small constant probability. As a result, repeating the experiment with several random picks of
g gives a polynomial-time quantum algorithm that succeeds reasonably well.

7 Acknowledgements.
We would like to thank Aparna for helping us learn cryptography and answering all our questions! She was
a great mentor and we were so lucky to be able to work with her!

Also a thanks to Mary and Marisa for running this program and providing this opportunity for us!

References
[Aum17] Jean-Philippe Aumasson. Serious cryptography: a practical introduction to modern encryption. No

Starch Press, 2017. 3

12

	Introduction
	Preliminaries
	Randomness
	Asymptotic Notation
	Introduction to Complexity Theory

	Introduction to Group Theory and Number Theory
	Euler's Totient Function
	Euler's Totient Theorem
	Fermat's Little Theorem
	Lagranges Theorem
	Linear Algebra

	RSA
	Key Generation
	Encryption Algorithm
	Decryption Algorithm
	Proof of Correctness
	Proof of Security

	Diffie Hellman
	How It Works

	Shor's Algorithm
	Acknowledgements.

